Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases

Alida L. P. Caforio1†*, Sabine Pankuweit2†, Eloisa Arbustini3, Cristina Basso4, Juan Gimeno-Blanes5, Stephan B. Felix6, Michael Fu7, Tiina Heliö8, Stephane Heymans9, Roland Jahns10, Karin Klingel11, Ales Linhart12, Bernhard Maisch2, William McKenna13, Jens Mogensen14, Yigal M. Pinto15, Arsen Ristic16, Heinz-Peter Schultheiss17, Hubert Seggewiss18, Luigi Tavazzi19, Gaetano Thieme4, Ali Yilmaz20, Philippe Charron21, and Perry M. Elliott13

1Division of Cardiology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padova, Italy; 2Universitätsklinikum Gießen und Marburg GmbH, Standort Marburg, Klinik für Kardiologie, Marburg, Germany; 3Academic Hospital IRCCS Foundation Policlinico, San Matteo, Pavia, Italy; 4Cardiovascular Pathology, Department of Cardiological Thoracic and Vascular Sciences, University of Padua, Padova, Italy; 5Servicio de Cardiología, Hospital U. Virgen de Arrixaca Ctra. Murcia-Cartagena s/n, El Palmar, Spain; 6Medizinische Klinik B, University of Greifswald, Greifswald, Germany; 7Department of Medicine, Heart Failure Unit, Sahlgrenska Hospital, University of Göteborg, Göteborg, Sweden; 8Division of Cardiology, Helsinki University Central Hospital, Heart & Lung Centre, Helsinki, Finland; 9Center for Heart Failure Research, Cardiovascular Research Institute, University Hospital of Maastricht, Maastricht, The Netherlands; 10Department of Internal Medicine, Medizinische Klinik und Poliklinik I, Cardiology, Wuerzburg, Germany; 11Department of Molecular Pathology, University Hospital Tubingen, Tubingen, Germany; 12nd Department of Internal Medicine, 1st School of Medicine, Charles University, Prague 2, Czech Republic; 13The Heart Hospital, University College, London, UK; 14Department of Cardiology, Odense University Hospital, Odense, Denmark; 15th Department of Cardiology (Heart Failure Research Center), Academic Medical Center, Amsterdam, The Netherlands; 16Department of Cardiology, Clinical Center of Serbia and Belgrade University School of Medicine, Belgrade, Serbia; 17Department of Cardiology and Pneumology, Charité Centrum 11 (Cardiovascular Medicine), Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany; 18Medizinische Klinik 1, Leopoldina Krankenhaus Schweinfurt, Schweinfurt, Germany; 19GVM Care and Research, Maria Cecilia Hospital, Cotignola, RA, Italy; 20Robert-Bosch-Krankenhaus, Stuttgart, Germany; and 21UPMC Univ Paris 6, AP-HP, Hôpital Pitie-Salpêtrière, Centre de Référence Maladies cardiaques héréditaires, Paris, France

Received 14 December 2012; revised 19 April 2013; accepted 23 May 2013; online publish-ahead-of-print 3 July 2013

In this position statement of the ESC Working Group on Myocardial and Pericardial Diseases an expert consensus group reviews the current knowledge on clinical presentation, diagnosis and treatment of myocarditis, and proposes new diagnostic criteria for clinically suspected myocarditis and its distinct biopsy-proven pathogenetic forms. The aims are to bridge the gap between clinical and tissue-based diagnosis, to improve management and provide a common reference point for future registries and multicentre randomised controlled trials of aetiology-driven treatment in inflammatory heart muscle disease.

Keywords
Myocarditis Cardiomyopathy Diagnosis Therapy

Introduction
Myocarditis is a challenging diagnosis due to the heterogeneity of clinical presentations.1–3 The actual incidence of myocarditis is also difficult to determine as endomyocardial biopsy (EMB), the diagnostic gold standard,1–3 is used infrequently.2,3 Studies addressing the issue of sudden cardiac death in young people report a highly variable autopsy prevalence of myocarditis, ranging from 2 to 42% of cases.4,5 Similarly, biopsy-proven myocarditis is reported in 9–16% of adult patients with unexplained non-ischaemic dilated cardiomyopathy (DCM)4,5 and in 46% of children with an identified cause of DCM.6 In patients presenting with mild symptoms and minimal ventricular dysfunction, myocarditis often resolves spontaneously without specific treatment.7 However, in up to 30% of cases, biopsy-proven myocarditis can progress to...
Viral myocarditis

Histological evidence for myocarditis associated with positive viral polymerase chain reaction (PCR) (Table 1).

Autoimmune myocarditis

Histological myocarditis with negative viral PCR, with or without serum cardiac autoantibodies (aabs) (Table 2).

N.B. There are autoimmune diseases (e.g. Hashimoto’s thyroiditis) where aabs are mainly biomarkers, autoantibody-mediated forms (e.g. Graves’ disease), in which aabs are pathogenic, and cell-mediated autoimmune diseases, which are negative for aabs. In all cases, autoimmune diseases are negative for infectious agents.

Viral and immune myocarditis

Histological myocarditis with positive viral PCR and positive cardiac aabs (Table 2).

N.B. A follow-up EMB may document persistent viral myocarditis, histological and virological resolution, or persistent virus-negative myocarditis, with or without serum cardiac aabs, e.g. post-infectious autoimmune disease.

Aetiology of myocarditis

Although the aetiology of myocarditis often remains undetermined, a large variety of infectious agents, systemic diseases, drugs, and toxins can cause the disease (Table 1). Some causes of myocarditis are now largely historical or occur in very specific scenarios such as sepsis or in immunocompromised patients. Molecular techniques, mainly (reverse transcriptase)(RT)-PCR amplification, suggest that viral infections are the most important cause of myocarditis in North America and Europe with genomes of enterovirus, adenovirus, influenza viruses, human herpes virus-6 (HHV-6), Epstein-Barr-virus, cytomegalovirus, hepatitis C virus, and parvovirus B19 reported in the myocardium of patients with myocarditis and DCM. Lymphocytic and giant cell myocarditis are presumed idiopathic or autoimmune if no viruses are identified in EMB and other known causes are excluded (Figure 1). Similarly, the diagnosis of idiopathic granulomatous myocarditis (cardiac sarcoidosis) requires negative stains for microorganisms. Autoimmune myocarditis may occur with exclusive cardiac involvement or in the context of autoimmune disorders with extra-cardiac manifestations, most frequently in sarcoidosis (Figure 1), hypereosinophilic syndrome, scleroderma, and systemic lupus erythematosus.

Pathogenesis

In human myocarditis, there is evidence for viral and autoimmune mechanisms, acting in individuals with or without a genetic predisposition (familial or sporadic cases, respectively). Murine studies of viral myocarditis are based mostly on Coxsackie virus B3-infected animals, which exhibit strain-specific susceptibility. Enteroviruses that preferentially enter cardiomyocytes via specific receptors cause severe cytopathic effects due to virus replication in the first 2 weeks post-infection. As a consequence, a humoral and cellular immune response, mainly consisting of macrophages and CD4+ and CD8+ T-lymphocytes, is initiated in resistant
animals (C57BL/6 mice, Sv129 mice) and leads to the elimination of the infectious agent within 2 weeks following infection. In susceptible mouse strains (e.g. A/J, ABY/SnJ, ASW/SnJ, ACA/SnJ, SWR/J, Balb/c), the infectious agent within 2 weeks following infection. In susceptible strains, the ongoing infection and inflammation trigger autoimmune reactions in the heart, most likely as a result of myocyte necrosis and subsequent release of self-antigens previously hidden to the immune system (Figure 2). The same genetically predisposed strains of animals develop autoimmune lymphocytic or giant cell myocarditis and later DCM after immunization with cardiac proteins. The frequency, cardiac, and disease specificity for such antibodies in myocarditis/DCM are summarized in Table 2.

Clinical presentation

Myocarditis presents in many different ways, ranging from mild symptoms of chest pain and palpitations associated with transient ECG changes to life-threatening cardiogenic shock and ventricular arrhythmia (Table 3). The disease may affect individuals of all ages, although it is most frequent in the young. This diversity of clinical scenarios implies that the diagnosis of myocarditis requires a high level of suspicion early in the course of the disease and the use of appropriate investigations to identify its cause. In all cases of suspected myocarditis, it is mandatory to exclude coronary artery disease and other cardiovascular disorders such as coronary artery disease, cardiomyopathy, and hypertensive heart disease present with a clinical deterioration caused by myocarditis that is mistakenly attributed to the natural history of the preexisting disease. If this is strongly suspected by the clinician, further investigation including EMB may be appropriate.

Myocarditis can be an incidental finding in autopsy studies of individuals who died of non-cardiac death or in myocardial samples obtained for clinical reasons unrelated to the clinical suspicion of myocarditis, for example following valve surgery or in explanted hearts taken from patients that have received inotropic drugs. In these circumstances, the significance of myocardial inflammation must be interpreted cautiously in the light of the clinical scenario.

Table 1 Causes of myocarditis/inflammatory cardiomyopathy

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Infectious myocarditis</td>
<td>Bacterial: Staphylococcus, Streptococcus, Pneumococcus, Meningococcus, Gonococcus, Salmonella, Corynebacterium diphtheriae, Haemophilus influenzae, Mycobacterium (tuberculosis), Mycoplasma pneumoniae, Brucella</td>
</tr>
<tr>
<td></td>
<td>Spirochaetal: Borrelia (Lyme disease), Leptospira (Weil disease)</td>
</tr>
<tr>
<td></td>
<td>Fungal: Aspergillus, Actinomyces, Blastomyces, Candida, Coccidioides, Cryptococcus, Histoplasma, Mucoromycoses, Nocardia, Sporothrix</td>
</tr>
<tr>
<td></td>
<td>Protozoal: Trypanosoma cruzi, Toxoplasma gondii, Leishmania</td>
</tr>
<tr>
<td></td>
<td>Parasitic: Trichinella spiralis, Echinococcus granulosus, Taenia solium</td>
</tr>
<tr>
<td></td>
<td>Rickettsial: Coxiella burnetii (Q fever), R. rickettsi (Rocky Mountain spotted fever), R. tsutsugamushi</td>
</tr>
<tr>
<td></td>
<td>Viral: RNA viruses: Coxsackieviruses A and B, echoviruses, influenza A and B viruses, respiratory syncytial virus, mumps virus, measles virus, rubella virus, hepatitis C virus, dengue virus, yellow fever virus, Chikungunya virus, Junin virus, Lassa fever virus, rabies virus, human immunodeficiency virus-1</td>
</tr>
<tr>
<td></td>
<td>DNA viruses: adenoviruses, parvovirus B19, cytomegalovirus, human herpes virus-6, Epstein-Barr virus, varicella-zoster virus, herpes simplex virus, variola virus, vaccinia virus</td>
</tr>
</tbody>
</table>

2. Immune-mediated myocarditis	Allergens: Tetanus toxoid, vaccines, serum sickness, Drugs: penicillin, cefacar, colchicine, furosemide, isoniazid, lidocaine, tetracycline, sulphonamides, phenytoin, phenylbutazone, methylxopropamide, amitryptiline
	Autoallantens: Heart transplant rejection, Infection-negative lymphocytic, Infection-negative giant cell
	Associated with autoimmune or immune-oriented disorders: systemic lupus erythematosus, rheumatoid arthritis, Churg-Strauss syndrome, Kawasaki’s disease, inflammatory bowel disease, scleroderma, polymyositis, myasthenia gravis, insulin-dependent diabetes mellitus, thyrotoxicosis, sarcoidosis, Wegener’s granulomatosis, rheumatic heart disease (rheumatic fever)

3. Toxic myocarditis	Drugs: Amphetamines, anlthazyclines, cocaine, cyclophosphamide, ethanol, fluorouracil, lithium, catecholamines, hemetine, interleukin-2, trastuzumab, clozapine
	Heavy metals: Copper, iron, lead (rare, more commonly cause intramyocyte accumulation)
	Miscellaneous: Scorpion sting, snake, and spider bites, bee and wasp stings, carbon monoxide, inhalants, phosphorus, arsenic, sodium azide
	Hormones: Phaeochromocytoma, vitamins: beri–beri
	Physical agents: Radiation, electric shock

Table 2

<table>
<thead>
<tr>
<th>Causes of myocarditis/inflammatory cardiomyopathy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Infectious myocarditis: Bacterial, Spirochaetal, Fungal, Protozoal, Parasitic, Rickettsial, Viral</td>
</tr>
<tr>
<td>2. Immune-mediated myocarditis: Allergens, Autoallantens, Autoantigens</td>
</tr>
<tr>
<td>3. Toxic myocarditis: Drugs, Heavy metals, Miscellaneous, Hormones, Physical agents</td>
</tr>
</tbody>
</table>
Diagnosis of myocarditis

Non-invasive imaging techniques such as cardiac magnetic resonance (CMR) imaging can be useful in making the diagnosis of myocarditis and for monitoring disease progression, but we strongly endorse the concept that EMB should be the gold standard for the diagnosis of definite myocarditis. However, this implies that all patients with suspected myocarditis should undergo an EMB which is not routine practice; moreover, current guidelines recommend EMB only in a limited number of clinical scenarios that do not include some common clinical situations.

Table 2 Serum cardiac autoantibodies in autoimmune myocarditis/dilated cardiomyopathy: frequency in myocarditis/dilated cardiomyopathy, other cardiac disease (OCD) and normals

<table>
<thead>
<tr>
<th>Cardiac autoantibody (Ab)</th>
<th>Myoc</th>
<th>DCM</th>
<th>OCD</th>
<th>Normal</th>
</tr>
</thead>
<tbody>
<tr>
<td>% aabs positive</td>
<td>%antibody</td>
<td>Functional effect/clinical relevance</td>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Muscle-specific ASA, (AFA,IFA,AMLA)</td>
<td>28–59*</td>
<td>9–41*</td>
<td>NT</td>
<td>0–25</td>
</tr>
<tr>
<td>Cardiac-specific</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHA</td>
<td>41–56*</td>
<td>26–30*</td>
<td>1–4</td>
<td>3</td>
</tr>
<tr>
<td>AIDA</td>
<td>17*</td>
<td>16*</td>
<td>2–4</td>
<td>0</td>
</tr>
<tr>
<td>Anti-Beta1-AR</td>
<td>33</td>
<td>40–51*</td>
<td>13–55</td>
<td>0–13</td>
</tr>
<tr>
<td>NT</td>
<td>35*</td>
<td>16</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td>73–96*</td>
<td>29–95*</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Anti-Beta2-AR</td>
<td>NT</td>
<td>30–38*</td>
<td>33</td>
<td>15</td>
</tr>
<tr>
<td>NT</td>
<td>13–14</td>
<td>37</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Cardiodepressant (Fy-gamma-receptor 2a)</td>
<td>NT</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-Ky channel-interacting protein 2, KChIP2.6—ELISA)</td>
<td>NT</td>
<td>14*</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Anti-Alpha-MHC (cardiac-specific)</td>
<td>17–37*</td>
<td>20–46*</td>
<td>4–16</td>
<td>0–2.5</td>
</tr>
<tr>
<td>Anti-MHC (muscle-cross reactive)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-MLC 1v</td>
<td>NT</td>
<td>17–35</td>
<td>25</td>
<td>0–15</td>
</tr>
<tr>
<td>Anti-tropomyosin</td>
<td>NT</td>
<td>55*</td>
<td>21</td>
<td>NT</td>
</tr>
<tr>
<td>Anti-non-myofibrillar</td>
<td>NT</td>
<td>46*</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Anti-MHC</td>
<td>NT</td>
<td>67*</td>
<td>42</td>
<td>NT</td>
</tr>
<tr>
<td>Anti-actin</td>
<td>NT</td>
<td>71*</td>
<td>21</td>
<td>NT</td>
</tr>
<tr>
<td>Anti-Troponin I,T</td>
<td>NT</td>
<td>1.7–20*</td>
<td>0–18</td>
<td>0–4</td>
</tr>
<tr>
<td>Anti-laminin</td>
<td>73</td>
<td>78</td>
<td>25–35</td>
<td>6</td>
</tr>
<tr>
<td>Anti-HSP60,70</td>
<td>NT</td>
<td>10–85*</td>
<td>1–42</td>
<td>3</td>
</tr>
<tr>
<td>Anti-s.Na/K-ATPase</td>
<td>26*</td>
<td>NT</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Anti-ANT</td>
<td>91*</td>
<td>57*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anti-M7</td>
<td>13*</td>
<td>31*</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Anti-BCKD-E2</td>
<td>100*</td>
<td>60*</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Legend to Table 2: *P < 0.05 vs. normals; ^P < 0.05 vs. OCD. AFA, anti-fibrillary Ab; AHA, organ-specific and partially organ-specific anti-heart aabs; AIDA, anti-intercalated disks-aabs; ANT, adenine nucleotide translocator; AMLA, anti-myolemmal aabs; AR, adrenergic receptor; ASA, anti-sarcosomal aabs; IFA, anti-interferibrillar aabs; BCKD, branched chain alpha-ketoacid dehydrogenase dihydrolipoyl transacylase; HSP, heat shock protein; NT, not tested; OCD, other cardiac disease; MHC, myosin heavy chain; MLC1v, myosin light chain 1 ventricular; Myoc, myocarditis.

aCardiac and disease-specific for myocarditis/DCM.

bIncrease L-type Ca2+ current; short-term positive inotropic effects; increase in cytoplasmic cAMP, and cAMP/FRET-activity.

c77% (in Chagas-DCM).

dIn atrial fibrillation patients.

eIn selected ELISA-positive heart failure patients.
Figure 1 Upper panel: histopathology and immunopathology of acute lymphocytic myocarditis (first row, ×100), chronic lymphocytic myocarditis (second row, ×200), sarcoidosis (third row, ×100), and giant cell myocarditis (fourth row, ×200). Left column = haematoxylin-eosin (HE); middle column = staining with anti-CD3 antibody (pan T lymphocyte marker); right column = staining with anti-CD68 antibody (macrophage marker). Lower panel: short-axis (upper line) and long-axis (lower line) CMR images of a young patient with acute myocarditis. In the first two columns, cine-SSFP images are shown in diastole and systole and suggest absence of any wall motion abnormality. In the next column, T2-weighted edema images demonstrate the presence of patchy focal edema in the subepicardium of the inferolateral wall (red arrows). In the last column, T1-weighted LGE images demonstrate presence of subepicardially distributed LGE (red arrows) which is typical for acute myocarditis.
presentations of myocarditis, in particular, pseudo-infarction. In order to improve recognition of myocarditis in clinical practice and to aid selection of patients that require further diagnostic evaluation and treatment, we propose new criteria for clinically suspected myocarditis for which biopsy analysis is recommended (Table 4). These criteria are based upon consensus of experts and require validation in future multicentre registries and randomized trials in patients who have undergone EMB. Medical centres that cannot safely perform EMB or do not have access to state-of-the-art CMR should refer patients with clinically suspected myocarditis to a tertiary referral unit experienced in EMB and CMR, particularly when patients present with haemodynamic instability or life-threatening arrhythmia.

Firstline tests in patients with a clinical presentation consistent with myocarditis

Electrocardiogram (ECG)

Electrocardiogram (ECG) is usually abnormal in myocarditis though ECG signs are neither specific nor sensitive (Table 4). Some ECG changes are more suggestive of myocarditis than others. For example, ST-T segment elevation in myocarditis is typically concave (rather than convex in myocardial ischaemia) and diffuse without reciprocal changes. A-V block in the presence of mild left ventricular dilatation can be due to various causes (including laminopathy), but it may also be suggestive of Lyme disease, cardiac sarcoidosis, or giant cell myocarditis. In recent studies, QRS prolongation was an independent negative predictor for survival (which could be also due solely to asynchrony in left bundle branch block), while Q-waves and repolarization abnormalities were unrelated to outcome or immunohistological features of inflammation on EMB.

Recommendation

1. Standard 12-lead electrocardiogram should be performed in all patients with clinically suspected myocarditis.

Echocardiography

Echocardiography helps to rule out non-inflammatory cardiac disease such as valve disease and to monitor changes in cardiac chamber size, wall thickness, ventricular function, and pericardial effusions. Global ventricular dysfunction, regional wall motion abnormalities, and diastolic dysfunction with preserved ejection fraction may occur in myocarditis. Histologically proven myocarditis may resemble dilated, hypertrophic, and restrictive cardiomyopathy and can mimic ischaemic heart disease. Fulminant myocarditis often presents with a non-dilated, thickened, and hypocontractile left ventricle as the intense inflammatory response results in interstitial oedema and loss of ventricular contractility. The role of newer imaging techniques such as tissue Doppler or strain-rate imaging in the diagnosis of myocarditis remains to be determined.

Recommendations

2. All patients with clinically suspected myocarditis should undergo a standard trans-thoracic echocardiogram at presentation.
3. Trans-thoracic echocardiogram should be repeated during hospitalization if there is any worsening of haemodynamics.
Table 3 Clinical presentations of patients with biopsy-proven inflammatory heart muscle disease

(1) Acute coronary syndrome-like
 (a) Acute chest pain
 - Frequently starting within 1–4 weeks of a respiratory or gastrointestinal infection
 - Frequently associated with severe and recurrent symptoms
 - In the absence of angiographic evidence of CAD
 (b) ST/T wave changes
 - ST-segment elevation or depression
 - T-wave inversions
 (c) With or without normal global or regional LV and/or RV dysfunction on echocardiography or CMR
 (d) With or without increased TnT/TnI that may have a time course similar to acute myocardial infarction or a prolonged and sustained release over several weeks or months

(2) New onset or worsening heart failure in the absence of CAD and known causes of heart failure
 (a) New onset or progressive heart failure over 2 weeks to 3 months
 - Dyspnoea
 - Peripheral oedema
 - Chest discomfort
 - Fatigue
 (b) Impaired systolic LV and/or RV function, with or without an increase in wall thickness, with or without dilated LV and/or RV on echocardiography or CMR
 (c) Symptoms possibly started after a respiratory or gastrointestinal infection, or in the peri-partum period
 (d) Non-specific ECG signs, bundle branch block, AV-block, and/or ventricular arrhythmias

(3) Chronic heart failure in the absence of CAD and known causes of heart failure (see point 2 above)
 (a) Heart failure symptoms (with recurrent exacerbations) of >3 months duration
 (b) Fatigue, palpitation, dyspnoea, atypical chest pain, arrhythmia in an ambulant patient
 (c) Impaired systolic LV and/or RV function on echocardiography or CMR suggestive of DCM or non-ischaemic cardiomyopathy
 (d) Non-specific ECG signs, sometimes bundle branch block and/or ventricular arrhythmias and/or AV-block

(4) ‘Life-threatening condition’, in the absence of CAD and known causes of heart failure comprising
 (a) Life-threatening arrhythmias and aborted sudden death
 (b) Cardiogenic shock
 (c) Severely impaired LV function

Nuclear imaging

Data on radionuclide evaluation, including antimyosin antibody imaging, are scarce but suggest that its sensitivity for detecting myocardial inflammation is variable and its specificity low. Due to their limited availability and risk from radiation exposure, nuclear techniques are not routinely recommended for the diagnosis of myocarditis, with the possible exception of suspected cardiac sarcoidosis.

Thallium 201 and technetium 99m scintigraphy have been used to detect cardiac sarcoidosis but lack specificity. Gallium-67 scintigraphy and more recently positron emission tomography using 18 fluorodeoxyglucose are probably more sensitive and may be useful in the acute phase of sarcoidosis and to monitor disease progression. The detection of extracardiac disease can suggest a diagnosis of cardiac sarcoidosis.

Cardiovascular magnetic resonance (CMR) imaging

Cardiovascular magnetic resonance imaging provides non-invasive tissue characterization of the myocardium and can support the diagnosis of myocarditis (Figure 1). The timing of CMR in suspected myocarditis will depend upon local availability and expertise, but it is reasonable to first perform CMR in clinically stable patients, prior to EMB. It should not be performed in life-threatening presentations where EMB is urgently indicated.

Cardiovascular magnetic resonance imaging techniques have been evaluated in animal models of myocarditis as well as in patients. Based on pre-clinical and clinical studies, an ‘International Consensus Group on CMR Diagnosis of Myocarditis’ published detailed recommendations on the indication, implementation, and analysis of appropriate CMR techniques for non-invasive diagnosis of myocarditis (Lake Louise criteria). The combined use of three different CMR techniques is suggested (Table 5).

One study has demonstrated good correlation between CMR and EMB in troponin-positive patients without coronary artery disease; however, correlation is worse in patients with a longer history of symptoms and histologically confirmed...
Inflammatory markers

Biomarkers

Inflammatory markers

Erythrocyte sedimentation rate and reactive C protein levels are often raised in myocarditis, but they do not confirm the diagnosis. Erythrocyte sedimentation rate and reactive C protein levels are such as pentraxin 3, galectin 3, and growth differentiation factor 15. Erythrocyte sedimentation rate and reactive C protein levels are often increased in acute pericarditis. New biomarkers and are often increased in acute pericarditis.

Inflammatory markers

Biomarkers

Inflammatory markers

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.

Viral antibodies

Positive viral serology does not imply myocardial infection but rather indicates the interaction of the peripheral immune system with an infectious agent. Polyclonal stimulation of antibodies (IgM and IgG) may furthermore lead to incorrect diagnosis. Thus, viral serology is of limited utility in the diagnosis of viral myocarditis because the prevalence of circulatory IgG antibodies to cardiotropic viruses in the general population is high in the absence of viral heart disease. In addition, infection with non-cardiotropic enteroviruses may cause an antibody response which is indistinguishable from the response to cardiotropic viruses and, in a recent study, there was no correlation between virus serology and EMB findings. Circumstances in which serological testing may be helpful include suspected hepatitis C, rickettsial phase 1 and phase 2, Lyme disease in endemic areas, and human immunodeficiency in high-risk patients.
immunoadsorption. Some aAbs have been described to be negative predictors in myocarditis or DCM. At present, no commercially available cardiac autoantibody tests have been validated against the results obtained in research laboratories; collaborative work among European research antibody laboratories is in progress to overcome this difficulty.

Proposed criteria for clinically suspected myocarditis

In this position statement, we propose new criteria for the diagnosis of clinically suspected myocarditis. These are based on a clinical presentation consistent with the diagnosis (Table 3) and the presence of one or more abnormalities on non-invasive testing (Table 4).

- Myocarditis should be suspected in the presence of:
 1. One or more of the clinical presentations in Table 4, with or without ancillary features (see below), and
 2. One or more of the diagnostic criteria from different categories (I to IV) in Table 4 or when the patient is asymptomatic, two or more diagnostic criteria from different categories (I to IV).

Ancillary features which support the clinical suspicion of myocarditis include:

- Fever ≥38.0°C at presentation or within the preceding 30 days with or without evidence of a respiratory (chills, headache, muscle aches, general malaise) or gastrointestinal (decreased appetite, nausea, vomiting, diarrhoea) infection;
- Peri-partum period;
- Previous clinically suspected or definite myocarditis (according to the criteria set in Table 4);
- Personal and/or family history of allergic asthma, other types of allergy, extra-cardiac autoimmune disease, toxic agents;
- Family history of DCM, myocarditis (according to the present criteria).

Recommendation

10. All patients with clinically suspected myocarditis should be considered for selective coronary angiography and EMB.

Second level investigations in clinically suspected myocarditis

In patients fulfilling the diagnostic criteria for clinically suspected myocarditis, we recommend selective coronary angiography and EMB (Figure 3). This recommendation also applies to patients with an acute coronary syndrome-like presentation (with or without ST segment elevation), increased cardiac troponins, preserved ventricular systolic function with or without features suggestive of myocarditis on CMR (Figure 1). At present, there are limited data on the prognostic implications of CMR findings in this context, and this common scenario was not included in a recently published AHA/ACC/HFSA scientific statement on EMB. Therefore, in the absence of robust prospective data (in suspected myocarditis with pseudo-infarct presentation and...
complication rate is low (0–0.8).9,18,139,148 and antiviral treatment. If EMB is performed by experienced teams, its EMB is also the basis for safe (infection negative) immunosuppression and antiviral treatment. If EMB is performed by experienced teams, its complication rate is low (0–0.8).9,18,139,148

The recent scientific statement on EMB gave highest levels of recommendations in the life-threatening clinical presentations. 120 However, the diagnostic, prognostic, and therapeutic value of EMB was based on the Dallas histopathologic criteria and did not include immunohistochemistry and viral genome analysis (Figure 1). These are established tools which should be used to achieve an aetiological diagnosis.9,14– 16,18,19,22,26,30 – 32,100,101,103,133,137,138

To optimize diagnostic accuracy and reduce sampling error in focal myocarditis, EMB should be performed early in the course of the disease and multiple specimens should be taken.2 At least three samples, each 1–2 mm in size, should be taken (from the right or from the left ventricle) and immediately fixed in 10% buffered formalin at room temperature for light microscopy; additional samples should be snap frozen in liquid nitrogen and stored at room temperature for light microscopy; additional samples should be snap frozen in liquid nitrogen, and stored at −80°C, or stored in RNA later tubes at room temperature for viral PCR.2,149

Endomyocardial biopsy

Endomyocardial biopsy confirms the diagnosis of myocarditis and identifies the underlying aetiology and the type of inflammation (e.g. giant cell, eosinophilic myocarditis, sarcoidosis) which imply different treatments and prognosis (Figure 1).1,3,11,14– 16 Importantly, EMB is also the basis for safe (infection negative) immunosuppression and antiviral treatment. If EMB is performed by experienced teams, its complication rate is low (0–0.8).9,18,139,148

The detection of replicative forms of viral nucleic acids in the heart supports a pathogenic role of virus in myocarditis; however, detection of viral mRNA by RT-PCR may be difficult to establish in EMB due to low amounts of viral mRNA especially in longstanding chronic myocarditis.

Clinical management

Outcome and prognosis of myocarditis depends on aetiology, clinical presentation, and disease stage.3,9– 11 Acute myocarditis resolves in about 50% of cases in the first 2–4 weeks, but about 25% will develop persistent cardiac dysfunction and 12–25% may acutely deteriorate and either die or progress to end-stage DCM with a need for heart transplantation.1,3–6,9,16,150

Biventricular dysfunction at presentation has been reported as the main predictor of death or
transplantation. Fulminant myocarditis is said to differ from (sub)acute lymphocytic myocarditis in its mode of onset, degree of haemodynamic compromise, and better outcome, but data are relatively scarce in adult patients. Fulminant myocarditis of unknown aetiology is more frequent in children and prevalent in neonates with a dismal prognosis. Most studies suggest that survival rates in giant-cell myocarditis are markedly worse.

Molecular detection techniques for viral genome in EMB specimens have provided conflicting prognostic information. Viral persistence in the myocardium has been associated with ventricular dysfunction and viral genome clearance with improvement of ventricular function and a better 10-year prognosis. In contrast, in a recent report, immunohistological evidence of inflammation but not the presence of viral genome alone was an independent predictor of survival. This discrepancy may relate to the variability in the viral epidemiology of different populations and to low numbers of events.

The frequency of specific viruses among patients who recover spontaneously is largely unknown. This may also confer some bias to the published studies on prognosis. The molecular mechanisms responsible for the reactivation of latent viral infection, the influence of immune activation triggering viral replication in chronic myocarditis, and immune-independent viral pathogenesis in non-inflamed hearts are remaining gaps in the understanding of viral pathogenicity.

2. Haemodynamically stable patients

When myocarditis is suspected in asymptomatic or mildly symptomatic patients according to the criteria shown in Table 4, admission to hospital and clinical monitoring are recommended until a definite diagnosis is established, since the situation can evolve rapidly and a cardiopulmonary emergency (e.g. severe heart block or life-threatening arrhythmia) is possible and unpredictable, even if systolic function is initially preserved. Exercise testing is contraindicated in the acute stage as it can precipitate arrhythmia.

Patients with haemodynamically stable heart failure should be treated with diuretics, angiotensin-converting enzyme inhibitor, or angiotensin receptor blockade and beta-adrenergic blocker. In patients who have persistent heart failure symptoms despite optimal management, additional treatment with aldosterone antagonists should be considered. The procedure for weaning of heart failure therapy following recovery of ventricular function is not defined.

Non-steroidal anti-inflammatory drugs, in particular acetylsalicylic acid, are a cornerstone of treatment for acute pericarditis, but have been associated with increased mortality in experimental models of myocarditis. Clinical data for their administration in myocarditis are inconclusive, and controlled trials are needed.

Table 4

<table>
<thead>
<tr>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Management of ventricular dysfunction should be in line with current ESC guidelines on heart failure.</td>
</tr>
</tbody>
</table>

3. Arrhythmia

There are no specific recommendations for the management of arrhythmia in myocarditis, and no management should be in line with current ESC guidelines. Sinus bradycardia, prolonged QRS duration, increased left ventricular hypokinesia on echocardiography, persistent or fluctuating cardiac troponin levels may precede a life-threatening arrhythmia. Temporary pacing may be needed for complete atrio-ventricular block. Indication for cardioverter defibrillator implantation (ICD) is controversial, because myocarditis may heal completely. Bridging by a lifesave in patients with myocarditis and severe ventricular arrhythmia (ventricular tachycardia or fibrillation) could solve the transient problem.

Recommendations

18. ICD implantation should be deferred until resolution of the acute episode.

19. Arrhythmia management outside the acute phase should be in line with current ESC guidelines on arrhythmia and device implantation.

4. Avoidance of exercise

Physical activity should be restricted during the acute phase of myocarditis until the disease has completely resolved. Athletes should be temporarily excluded from competitive and amateur leisure time sport activity regardless of age, gender, severity of symptoms, or therapeutic regimen. After resolution of the clinical presentation (at least 6 months after the onset of the disease), clinical
reassesssment is indicated before the athlete resumes competitive sport. Pre-participation screening should be performed every 6 months during the follow-up. Although the duration of restricted physical activity in non-athletes is undefined, based upon expert opinion of this Task Force, it seems reasonable to give similar recommendations.

(b) Immunomodulatory therapy

Anti-viral therapies
There is still no approved antiviral-therapy for the treatment of enteroviral infections. Vaccines may be an option in the future. Treatment with acyclovir, gancyclovir, and valacyclovir may be considered in patients with herpes virus infection, although their efficacy is unproven in myocarditis. Preliminary data on interferon-beta treatment suggest that it eliminates enteroviral and adenoviral infections. High dose intravenous immunoglobulin (IVIG) modulates the immune and inflammatory response by a variety of mechanisms. High dose IVIG has been found to improve NYHA functional class, and, specifically in enteroviral infection, with a better 10-year prognosis. In general, we recommend involvement of infectious disease specialists when considering in patients with herpes virus infection, although their efficacy is unproven in myocarditis. Preliminary data on interferon-beta treatment suggest that it eliminates enteroviral and adenoviral infections. High dose IVIG has been found to improve NYHA functional class, and, specifically in enteroviral infection, with a better 10-year prognosis.

High dose intravenous immunoglobulin
High dose intravenous immunoglobulin (IVIG) modulates the immune and inflammatory response by a variety of mechanisms and is used in a number of systemic autoimmune diseases. Its use has been associated with improved left ventricular ejection fraction in chronic symptomatic heart failure of various causes, but IVIG was ineffective in the IMAC controlled trial of recent-onset DCM in which only 15% of patients had biopsy-proven myocarditis of non-specified cause. Nevertheless, IVIG has no major side-effects and may be used in myocarditis refractory to conventional heart failure therapy, both viral and autoimmune forms, particularly if autoantibody-mediated. In the absence of multi-centre randomized studies in biopsy-proven myocarditis/DCM or viral or autoimmune origin, we do not give recommendations for the use of IVIG.

Immunoadsorption (IA)
Various aabs have been detected in myocarditis and DCM patients and for some a pathogenic role has been proposed (Table 2). Thus, therapeutic strategies used in other auto-immune disorders, such as neutralization or immunoadsorption (IA) of disease-causing aabs, might offer treatment options for autoimmune myocarditis/DCM. Small randomized studies with DCM patients have shown that IA induces improvement of LV function and decreases myocardial inflammation; a larger randomized controlled clinical trial is currently underway in Europe. Until these results are available, we do not give recommendations for the use of immunoadsorption.

(c) Immunosuppressive therapy

Most data on safety and efficacy of immunosuppressive regimes in myocarditis have been obtained using steroids alone, azathioprine and steroids, or cyclosporine A, azathioprine and steroids. Information on other drugs is not available. Data from the few randomized clinical trials of immunosuppression in myocarditis and DCM are shown in Table 6. Response to therapy is reported mainly in chronic virus-negative forms, in giant cell myocarditis, and in active myocarditis defined as autoimmune (e.g. virus-negative and autoimmune positive). Conversely, immunosuppression had a neutral effect in the Myocarditis Treatment Trial, where patients had myocarditis of unknown aetiology.

It is necessary to identify possible drugs causing hypersensitivity reactions, particularly in patients with hypereosinophilia, the inducing drug (Table 1) should not be reintroduced after recovery.

Recently, a single-centre controlled trial suggested a beneficial effect of combined steroid and azathioprine therapy in virus-negative myocarditis. These data need to be confirmed in multicentre studies.

Recommendations
21. Immunosuppression should be started only after ruling out active infection on EMB by PCR.
22. Based on experience with non-cardiac autoimmune disease, the task group recommends consideration of immunosuppression in proven autoimmune (e.g. infection-negative) forms of myocarditis, with no contraindications to immunosuppression, including giant cell myocarditis, cardiac sarcoidosis, and myocarditis associated with known extra-cardiac autoimmune disease.
23. Steroid therapy is indicated in cardiac sarcoidosis in the presence of ventricular dysfunction and/or arrhythmia and in some forms of infection-negative eosinophilic or toxic myocarditis with heart failure and/or arrhythmia.
24. Immunosuppression may be considered, on an individual basis, in infection-negative lymphocytic myocarditis refractory to standard therapy in patients with no contraindications to immunosuppression.
25. Follow-up EMB may be required to guide the intensity and the length of immunosuppression.

(d) Follow-up

Myocarditis patients can have partial or full clinical recovery; some may relapse many years after the first episode. Relapses should be managed similarly to the index episode. In patients who do not resolve, disease may continue subclinically and lead to DCM.

The myocarditis patient with pseudo-infect presentation, normal coronary arteries, and preserved ventricular function should be discharged when cardiac enzymes have come into the normal range, and offered long-term non-invasive cardiac follow-up. In the event of prolonged (weeks or even months) documented increase of cardiac enzymes, and/or progressive reduction in left and/or right ventricular function, the patient should be readmitted to hospital to perform EMB.
Persistently elevated troponin T values could be due to heterophile antibodies interfering with the assay. Performing a troponin I could clarify whether persistent enzyme elevations are due to an ana-philic antibodies interfering with the assay. Performing a troponin I could clarify whether persistent enzyme elevations are due to an ana-

Table 6 Controlled immunsuppression trials in myocarditis and dilated cardiomyopathy

<table>
<thead>
<tr>
<th>Trial</th>
<th>Year</th>
<th>Type</th>
<th>Diagnosis</th>
<th>Primary endpoint</th>
<th>Results</th>
<th>Author</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prednisone trial for DCM</td>
<td>1989</td>
<td>Randomized controlled trial (RCT): prednisone (PDN)</td>
<td>'Reactive' DCM (n = 60) 'Nonreactive DCM' (n = 42)</td>
<td>Either higher LV ejection fraction (LVEF) at 3 months or lower LV end-diastolic dimension and better exercise tolerance</td>
<td>Favourable</td>
<td>Parrillo</td>
</tr>
<tr>
<td>MTT</td>
<td>1995</td>
<td>RCT: PDN and cyclosporine or azathioprine</td>
<td>Acute biopsy-proven myocarditis (unknown aetiology)</td>
<td>LVEF at 6 months</td>
<td>Neutral</td>
<td>Mason</td>
</tr>
<tr>
<td>Giant cell myocarditis treatment trial</td>
<td>2008</td>
<td>Prospective: PDN and cyclosporine</td>
<td>Giant cell myocarditis (autoimmune)</td>
<td>Survival at 1 year</td>
<td>Favourable</td>
<td>Cooper</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>Prospective: PDN and cyclosporine</td>
<td>Active myocarditis and chronic heart failure (aetiology known in retrospect)</td>
<td>LVEF at 1 year</td>
<td>Favourable in virus-negative aabs-positive autoimmune forms</td>
<td>Frustaci</td>
</tr>
<tr>
<td></td>
<td>2001</td>
<td>RCT: PDN and azathioprine</td>
<td>Inflammatory DCM (unknown aetiology, increased HLA expression on EMB)</td>
<td>LVEF at 3 months, sustained at 2 years</td>
<td>Favourable</td>
<td>Wojnicz</td>
</tr>
<tr>
<td>TIMIC</td>
<td>2009</td>
<td>RCT: PDN and azathioprine</td>
<td>Inflammatory virus-negative DCM</td>
<td>LVEF at 6 months</td>
<td>Favourable</td>
<td>Frustaci</td>
</tr>
</tbody>
</table>

Summary

This position statement reviews current knowledge, and proposes new diagnostic criteria for clinically suspected myocarditis and its distinct biopsy-proven pathogenetic forms. The aims are to bridge the gap between clinical and tissue-based diagnosis, to improve management and provide a common reference point for future registries and multicentre randomized controlled trials of aetiology-driven treatment in inflammatory heart muscle disease.

Supplementary material

Supplementary material is available at European Heart Journal online.

Conflict of interest: none declared.

